Understanding Haddock somatic growth changes on Eastern Georges Bank

Y. Wang, A. Gharouni, K. Friedland, C. Melrose

Part 1. Modelling haddock growth changes

Haddock length data

- EGB haddock length at age from 1986-2017 using DFO survey samples
- Ages 1-8

Von Bertlanffy Mixed effect model

Von Bertlanffy Model

La~Linf*(1-exp(-1*K*(Age-t0)))

Part 2.

Understanding the mechanism of somatic growth changes of Eastern Georges Bank haddock

Conceptual model: possible relevant factors to haddock growth

Fish Density

>Cohort strength:

$$\ln A_{ijs} = \beta_i + \beta_j + \beta_s + \beta_{is} + \epsilon$$

where A_{ijk} is the survey index at age i, i=1,2, and cohort j, $j=1985,1986,\ldots,2015$, in survey s

➤ Annual biomass:

$$\ln B_{ts} = \beta_t + \beta_s + \epsilon$$

where B_{ts} is the survey biomass index in year t, $t=1987, \dots, 2017$ from survey s

GAM model

For both long(1987-2018) and short(1998-2018) time series data:

• Step 1: GAM model to relate Length with Age

La
$$\sim$$
 s(age)+ ϵ ϵ \sim N(0,1)

- Step 2: GAM model to interpret the impact of environmental factors on the variation of haddock growth.
 - \triangleright Response variable: residuals (ϵ) from step 1.
 - Predictor variables: variables in the conceptual model except for benthos data

Long time series data

La
$$\sim$$
 s(age)+ ϵ

Collinearity check

• Covariate variables with the variance inflation factor (VIF>3) and linear correlation $r^2>0.7$

GAM models

- ➤ Smooth parameter estimation and variable selection: Double penalty(Marra and Wood,2011) smooth approach.
- Model selection: based on AIC and anova test
 - $\epsilon \sim s(ycs)+s(bio)+s(btf)+s(sftf)+s(sprtrans)+s(nao)+s(gsi.w)$
 - $\epsilon \sim s(ycs) + s(bio) + te(bio, age) + s(btf) + s(sftf) + s(sprtrans) + s(nao) + s(gsi.w)$
 - $\epsilon \sim s(ycs)+s(bio, by=age)+s(btf)+s(sftf)+s(sprtrans)+s(nao)+s(gsi.w)$

Model check

 ϵ ~ s(ycs)+ s(bio)+ te(bio, age)+s(btf)+s(sftf)+s(sprtrans)+s(nao)+s(gsi.w)

- Deviance explained 40.6%
- density-dependent effect explained 36.8% of deviance

short time series data(1998-2018)

GAM models

- > Model selection: based on AIC and anova test
 - $\epsilon \sim s(ycs)+s(bio)+s(btf)+s(sftf)+s(sprtrans)+s(nao)+s(gsi.w)$
 - $\epsilon \sim s(ycs) + s(bio) + te(bio, age) + s(btf) + s(sftf) + s(sprtrans) + s(nao) + s(gsi.w)$
 - $\epsilon \sim s(ycs)+s(bio, by=age)+s(btf)+s(sftf)+s(sprtrans)+s(nao)+s(gsi.w)$

Model check

 $\epsilon \sim s(ycs) + te(bio, age) + s(nao) + s(mag.fb)$

- Deviance explained 23.6%
- density-dependent effect explained 19.1% of deviance

summary

- Density dependent effect and possible high temp in the summer and fall have the most influences on haddock growth changes.
- Consistent with Clarks(1969) description about fish size reduction following very strong cohorts in the history.
- Care is needed with the interpretation of the very week cohorts at older ages due to small number of samples
- When there are high concurvity among covariate variables, accurately estimate these nonlinear effects could be tricky.